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Introductory remarks 
 

Newton’s physics or classical mechanics is based on balance equations or conservation laws, 

like the preservation of mass, energy, and momentum etc. Also the quantities involved in the 

theory had in parts already studied by Galilei, Kepler, Descartes, and Huygens, it was on 

Newton (1687) to define the proper relations and to built a first unique system. The only 

exception was the conservation of energy, a law which was only recognized since the middle 

of the 19
th

 century by Mayer, Joule and independently by Helmholtz. The strange point is that 

the conservation of energy was experimentally first proved in the early 20
th

 century, at a time 

when the Newtonian physics was already overcome by relativity theory. 

 

In order to integrate previous observations in a concise theory, Newton also developed one 

form of differential calculus calling the new method the fluxeon theory, obviously motivated 

by physics in terms of flows (fluxes). At the same time Leibnitz invented his more formal way 

for defining differentials and the differential calculus, a parallel development which caused a 

dispute about the ownership between the two opponents for all their lifetime.  However, 

despite their dispute, a new powerful tool had developed, which can be elucidated by the 

concept of the  

 

Black Box Analogy 

Consider you get some electrical devise with two pairs of terminals, one marked input and the 

other one output. And, you are not able to open the devise; otherwise it would be disturbed 

(not unreasonable if you consider a computer chip). What you can do is to connect a defined 

source at the input and to observe the output, let say by an oscilloscope which displays the 

output current as a function of time. Then by knowing the rules of electricity you may try to 

find a circuit which is equivalent to the content of the devise. By example, assuming the 

content consists of a coil of induction and a resistance as shown, 

 

 
 

Then the current I satisfies the differential equation 

)(teRi
dt

di
L  , 

e(t) is the input voltage. By solving the equation formally you can test whether your 

hypotheses about the content is verified by some combination of L and R values, otherwise 

you may try another configuration unless you derived a model about the unknown processes 

within the box. 

 

During the 18
th

 century a branch of physics developed which did not focus mainly at finite 

objects considered in addition continua (e.g. Euler). However, essential results concerning the 

integration of observations and theory where only achieved during the 19
th

 century, e. g. the 

concept of the stress tensor was developed by Cauchy also he still tried to unify it with 

popular concepts of particle interaction, Navier and Stokes developed the theory of viscous 

flow which in principle solved basic problems of the insufficient Euler equations but even 



 3 

today provide serious problems concerning their solutions, or Kirchhoff  formulated the 

precise theory of bending a beam for which before twice an award was proposed by the 

French National Academy of Sciences. In other areas a closed theory, or even the basic 

experiment, was only established during the early 20
th

 century. 

 

When Newton and Leibnitz invented the differential calculus, they found a strong opposition 

in the church because some infinitely small simply could not exist. This problem was still not 

really overcome in the 19
th

 century and sometimes it is still showing up today, not at least in 

connection with porous media. As mentioned, Navier tried to relate his flow equations to the 

interaction of particles and failed. Similar, until today, attempts are undertaken to derive flow 

in porous media from first principles at the microscopic level with more or less success. 

Obviously a porous medium consists of solids and pores as illustrated in the sketch and the 

flow is naturally restricted to the pores. 

 

 
In this case differentiability obviously seems to be violated in terms of what one has learned 

in terms of differentiable functions which now should be applied to two or even three 

dimensions. However, as will turn out below that’s not really a problem if we consider a so 

called  

 

Characteristic Volume 

Consider we take randomly very small probes like 1 mm
2
 from the idealized porous medium 

sketch above,  we will find basically two separated samples, one just consisting of rock and 

the other one representing just fluid within  the pore, between these extremes we will find very 

few samples consisting partly of  rock and partly of fluid. Now, by increasing the sampling 

area or volume continuously we will find less and less samples which contain only one of the 

extremes and increasingly more containing a certain fraction of both states. While increasing 

the size of the sample volume, the variance of the resulting probability distribution will 

decrease and approach a rather sharp peak. Whenever the sample size has grown to a volume 

for which the variance approaches zero, we can talk about the characteristic volume because 

the parameter under consideration can be precisely predicted from a single sample. 

 

This at least theoretical approach is illustrated in the figure below, where the average 

conductivity for an artificial material produced in the computer has been calculated. The 

material is composed of the two extreme states totally conductive (1) and totally isolating (0) 

and the measured variability of observed conductivities is plotted against the characteristic 

volume measured in pixels. 
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Chapter 2:  Mass and Energy Balance, Basics 
 

In textbooks on porous flow you may find either just the governing differential equations or 

some difference scheme is derived from a simple rectangular area. In a physical sense any 

geometrical restriction to a control volume is not acceptable because otherwise you could not 

be sure that your result, in our case partial differential equations, is of general nature. 

Nevertheless, we start with some simple geometrical objects to clarify basics before entering 

into a more general description. 

 

Let’s consider a simple parallel flux field (vector field) within the area G which may represent 

some mass or energy transport or even some force as illustrated in the following sketch. 

 

 
From G we cut a sub area G1 bounded by an arbitrarily closed polygon. The simple question 

to be solved then is whether the inflow is balanced with the outflow or, perhaps, does 

something happen inside. In order to calculate the amount entering or leaving we have to 

consider every surface element and to divide the flux vector into a component perpendicular 

to the surface, the amount entering, and a second one parallel to the surface element, 

indicating the amount bypassing. Because we will similar considerations later on, lets do that 

as an  

 

Exercise 

Given a flux vector, this is approaching an oblique oriented surface element (line) of your 

choice. Separate it graphically into the flux components parallel and oblique to the surface: 
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The graphic procedure, however, is not really satisfying. In order to derive a computational 

scheme one defines the normal vector to the surface element. There are three rules or simply 

definitions necessary in order to avoid confusion: 

 

The normal vector of a surface element for a closed area satisfies the conditions 

1) The normal is perpendicular to the surface. 

2) The normal vector points to the outside of the closed are. 

3) The closed area is always surrounded anticlockwise. 

 

Given the normal vector, the fluxes entering into the area are simply calculated by  

vnvin


 . 

In order to understand the negative sign we consider the rather simple configuration where at 

the left all fluxes (black) are directed outside while at the right they are all directed inward. 

 

 

 
In this special case and in the two-dimensional projection, the normal vectors of the surface 

are given by (consider the anticlockwise rule) 

 

)0,1(),1,0(),1,0(),0,1( in


. 

The fluxes for the left case are 

)0,(),,0(),,0(),0,( aaaavi 


 

Taking the sum over the scalar products iinv


 over the surface areas (which are iL , L=the 

length of the bounding area element) we get the total flux 

   LnvLnv iii


4 ,          

although all fluxes are leaving the area under consideration. So if we take the view from 

inside the control area the change within the area is correctly described by 

change =  iii Lnv


 

or in terms of a continuous differentiable surface we get the surface integral 

change= 
S

dsnv


.           

NOTE: The change observed within the area under consideration obviously is a scalar 

    value while the input to our ‘black box’ is a vector field! 
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Exercise 

Show that the results are the same for the case of fluxes entering the area, as illustrated by the 

right cube in the sketch. 

 

 

 

Fluxes derived from a potential 

 

In many cases the fluxes are derived from a scalar field which frequently satisfies the 

conditions of a potential field ),,( zyx . The gradient of such a scalar field generates a vector 

field or more precisely the gradient field 

 gradj


 

or in Cartesian coordinates 

 j


          

In this case j


 measures the slope of the scalar field and has a positive value if the height of 

the surface increases in the neighborhood of the point under consideration. ´The sketch below 

illustrates two special cases with regard to local coordinates: At the left the point under 

consideration sitting on a ridge and at the right at the bottom of a valley. 

 

 
 

The sign of   is hill upward positive while the transport always should be hill downward in 

order to satisfy the minimum principle of energy. The fluxes, therefore, are opposite to the 

gradient of the scalar function 

 gradv


 

or 

v


,          

 

and the Balance equations become 

 

 change =   iii Lngrad


)(  =   iii Lngrad


)(  

or  

change=  
S

dsngrad


)(  =  
S

dsngrad


)( . 

Summary 

If we consider an arbitrary bounded area within a flux field, the changes within this are or the 

difference between in and outgoing fluxes is given by 

inout vvv


 = 
S

dsnv


 =  
S

dsngrad


)( . 
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Now, the balance equation derived depends on the size or volume of our control volume V. In 

order to make it comparable to other materials, by example, we have to normalize it  

VjjVv inout /)(/( 


. 

v


  defines what happens within the area under consideration: 

0v


 something is produced: source 

0v


 nothing happens:  flow equilibrium 

0v


 something is consumed: sink. 

 

 

 

 

The Divergence Theorem 

 

We already considered the need of normalizing our control volume. In a more mathematical 

sense we may also consider a small volume V surrounding a point M. Then by reducing the 

volume we will arrive finally at the value of change taking place at the point itself, leading to 

the divergence at that point 

 

V

dsv
vdiv

MV









lim)( . 

 

We will see later, that this limit is not necessary to derive the appropriate differential 

equations otherwise we would restrict ourselves to homogeneous media not in agreement with 

porous media. Nevertheless, the following exercise is useful: 

 

Exercise 

Show in the one-dimensional case that 
2

2

)(
dx

d

l

vv
div inout 





  and for a rectangular cube 

that  2div , even in three dimensions. 

 

 

 

The Gauss or Gauss-Ostrogradadski Formula 

 

Without prove we give the following important relation known as Gauss formula: 

 

  

 

 

 

 

 

 

where v


 indicates the vector field of fluxes and n


 the normal vector of the surface,  the scalar 

product nv


 is the projection of  v


 onto n


. 

 

Here a surface integral within a vector field is related to a volume integral and vice versa. 

This will be used in deriving the governing partial differential equations and it provides the 

base for Greens formulae which play an essential role in the FE-method. 

 
SV

dsnvdVv

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Gauss Theorem and Green’s Formulae  

 

Let G be an area bounded by piecewise smooth surface elements, then we find 

 

 

 

a) Given the continuous vector field  v=(U(x,y,z), V(x,y,z), W(x,y,z)) within G, then we have 

by the Gauss’ theorem 

 
SG

dsnvdgv .   

 

b) Now let’s write ,,, vuorHWGVFU   

where HGF ,,, are functions of (x,y,z), then 

      

   
G G S

dsnvvdgdgv )(  

 

c) Another special case is derived if the vector v(F,G,H) is the gradient of a scalar field (e.g. 

temperature, pressure, concentration), v : 

 

dsndgdg
G G S

*)()()(2     

and in case of .constc  : 

  
G S

dsndg *)(2

. 

 

These equations play a significant role in deriving FE and FV methods from partial 

differential equations. 
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Mass and Energy Balance continued 

 

During the previous discussion we have seen that the surface integral within a flux field v


, 

taken over a specific control volume provides a scalar value. Considering that this value 

results from a not necessarily continues scalar field u  within the control volume we can 

consider its temporary change which at any instance has to be equal to the difference between 

the in- and outflow:  

  
V S

dsnvudV
dt

d 
      

Provided the control Volume(s) under consideration does not change we can write 

 

 




V S

dsnvdV
t

u 
 

 

and by use of the Gauss Theorem the right hand side can be rewritten as 

 

0))(( 



 dVvdiv

t

u

V


, 

or 

0))(( 



 dVvdiv

t

u

V


 

in case there is no gain or loss within the control volume. Otherwise we have some production 

or destruction Q which has to be measured as [value/time unit] and we have to consider  

 

   




VV V

dVvdivQdVdV
t

u
)(


 

with Q positive in the case of production and negative in case of destruction. Summarizing 

this case we get 

0))(( 



 dVQvdiv

t

u

V


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KEY QUESTION 
Under which conditions will the equality in the equations 

0))(( 



 dVvdiv

t

u

V


 

and 

 

0))(( 



 dVQvdiv

t

u

V


 

hold, independent of the size of the control volume? 

Please state: 

 

 

 

 

 

 

 

 

 

 

Note: You should end up with a differential equation without using the divergence 

theorem or any consideration of a limit as V->0. 

 

 

Remark 1 

The assumption that the control volume does not change is a first order approximation for 

sedimentary sequences. During continuous sedimentation the overload increases and the 

sediments will compact just due to mechanical forces, or equivocally, the volume will 

decrease during time. In addition, chemico-physica processes like pressure solution and 

redistribution may occur which complicate the stress dependent processes in addition. To 

consider this aspect is beyond the present scope. 

 

Remark 2 

The equation 

  




V S

dsnvdVQ
t

u 
)(

 

where Q may be zero, provides a weak formulation of the problem to solve transport 

processes. For that purpose subdivide the area under consideration into aerial subsets, by 

example triangles as illustrated in the sketch 
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Then we can evaluate the volume integral e. g. by using the Gauss theorem and we can 

formally evaluate the fluxes through the bounding lines or surfaces. An interesting aspect is 

that, by considering the anti clockwise rule for the surface integral all internal boundaries 

vanish. This is equivalent to the statement that the flow leaving one internal volume element 

along boundary i has to be equal to the flux entering the neighboring element along the same 

boundary. Or in other words, the mechanism ensures the conservation of the property u 

within the area under consideration as long as nothing is lost during the outer boundary 

indicated as an ellipse in the sketch. The equation of course does not include a rule how to 

calculate the flux at the boundaries between elements or the scalar u within the elements. This 

final problem is the topic of numerical mathematics and is differently done by example in 

Finite Differences (FD), Finite Volumes (FV) or Finite Elements (FE).   
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The equation 

0))(( 



 dVQvdiv

t

u

V


 

is certainly satisfied if 

 

0)( 



Qvdiv

t

u 
        or       0 Qvut


 

holds for every point within the area under consideration. Consider the case of a porous 

medium and v


 the pore water flux. Certainly, within the solids nothing is flowing and all 

parts of the differential equation have to evaluate to zero. Within the pores flow occurs 

satisfying the differential equation.   

 

If  v


is derived from a scalar field or potential  , i. e.  gradv


 the equations become 

 

0)( 



Qgraddiv

t

u
        or       02  Qut  

 

 

In case there is no temporal change or production within our ‘black box’, the equation reduces 

to the Laplace equation 

02   

which played an essential role before digital computers had become available. First, some 

fundamental solutions are known for the Laplace equation basic solutions are known, 

especially in two dimensions, and from these solutions for more complex areas can be derived 

by conformal maps. 

 

The differential equations derived, obviously cannot be solved because we lack a relation 

between u and v


. We will return to this problem below. However, not even the Laplace 

equation can be solved unless we define an area with closed boundaries and additional 

conditions along the boundary. There are two basic and one derived boundary conditions: 

 

1
st
 kind or DIRICHLET’s condition: Find a harmonic solution for the interior of the 

considered area so that the solution ),,( zyx satisfies given values of  )(sf

along the boundary. 

2
nd

 kind or NEUMANN’s condition: Find a harmonic solution for the interior of the 

considered area so that the solution ),,( zyx satisfies given values of the 

normal derivative )(sf
n





along the boundary. 

3
rd

 kind or mixed condition: Find a solution for the interior of the considered area so 

that the solution ),,( zyx satisfies the equation )(sf
n





  , and

)0,,( 22   const along the boundary. 
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In case of the time dependent equation, we obviously need additionally an initial condition 

within the area under consideration, i.e.  the state from which the process starts. Observe 

that this state has not to satisfy the differential equation and that the solution for very long 

time will be determined by the boundary conditions. 

 

 

Exercises 

1) Find (qualitatively) the solution for the 1-D problem 0




x

u
 with u=a at x=0 and u=b 

at x=1. 

2) What would be the solution over a square with values of u given at the four corner 

points? 

3) How can the boundary condition 0




n

u
 be interpreted (2 possibilities). 

4) Consider a well located within a homogeneous aquifer with free surface. The well has 

diameter r and you are pumping continuously Q [m
3 

] water. The free water surface 

within the well than will have dropped to height H. Through the surface area of the 

well water will  flow v [m/s]which is proportional to the slope of the free water 

surface or  
x

y
Kv



 , with y the height of the free water surface. At the boundary of the 

well the water level in the aquifer will be equal to the free water level within the well.   

Derive the differential equation, the required boundary conditions and the solution. 

Sketch the solution. 
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Notation of Differentials 
 

Let U be a scalar function U(x,y,z), then 

 

),,(),,( zyx UUU
z

U

y

U

x

U
gradUU 












  generates a vector. 

 

torNablaOpera:   

grad: the gradient, in euclidean space equivalent to  . 

 

 

The Nabla operator is used like a vector, i.e. the rules of vector algebra apply: 

 

















2

2

2

2

2

2
2 *

zyx
   

 

or, if the operator is applied twice, a scalar field results. Alternatively the Divergence 

div or the .: ratorLaplaceOpe  are used 

 

zzyyxx UUUgradUdivU
z

U

y

U

x

U
U 














 )(

2

2

2

2

2

2
2   
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Chapter 3: Fluxes and Special Partial Differential Equations 
 

The divergence or Gauss theorem provides us with an abstract relationship between a state 

and a flux, however, not with an equation which could be solved unless we find a functional 

relationship between the two properties. Concerning the fluxes, these relationships are based 

on experience (experiments) which are performed on a representative volume. By example, 

consider a coarse grained rock like granite and its heat conduction. If you perform your 

experiment at a very small volume you may measure just from a feldspar or a quartz grain, 

only if your volume is ‘representative’ you will get the average value for the rock rather than 

a single type of mineral. There have been and there are many attempts to solve the so called 

up scaling problem that means to derive large scale properties from rather small scale or even 

microscopic ones. Although this attempt in is fascinating in itself, mostly it is not very 

practical and well designed experiments are more successful. First attempts in this direction 

have been made in 50
th

 of the 19
th

 century in terms of the theory of irreversible 

thermodynamic processes. However, the closure with classical thermodynamics was never 

fully established. Here we will consider only rather simple examples with the fluxes derived 

from a scalar field or potential, sufficient for the problems considered here. 

 

Fick’s 1
st
 law is describing the redistribution of a soluble chemical species within a fluid in 

the sense of the continuums theory. The flux is 

CDjc 


,  

C is the concentration of the substance and D is the Diffusion coefficient. Obviously C is a 

scalar property while D may be a tensor if the medium is anisotropic. In this case we can 

derive an explanation from classical thermodynamics, especially the Brownian motion; 

however, one cannot explain an initial disturbance within the frame of the classical theory. 

The flux then is related to the temporal change observed by 

)( CD
t

C





 

or if we have to consider chemical reactions between the solid and fluid indicated by Q  

)( CDQ
t

C





; 

C is the volume of fluid within the porous medium. In addition, consider the previous 

arguments. 

 

Exercise 

C can be, dependent on the purpose be defined in different units, e.g. Vol% (e.g. spirits), g/l 

or kg/m
3
 , oralternatively mol/l. Dependent on the definition the dimension of the diffusion 

coefficient D will be modified. The rule, however, is that the dimension at the left side has to 

be identical with the dimension of the right side of the equation, a statement which always has 

to be true. Derive the dimension of D for the different measurements mentioned. 

  

Based on the previous equation one can elucidate how fluxes derived from a potential are 

related to random processes which may occur on the microscopic level and how they even 

may affect numerical solutions.  

 

Consider we have two areas with different diffusion coefficients D1 < D2 and we add some 

concentrated solute (say as Dirac delta function) right at the boundary, then by our flow law 

the material will move faster into area (2) than area (1). The spreading process of the particles 

can be described by a simple Markov process; however, we have to consider that the distance 

any particle will move per time unit (speed) depends on the area where it is moving. The 
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distance in D1 will be proportional to D1 / D2 if we select the distance of grid points as 1 

within D2. Thus, the problem to solve the spreading process into areas of different 

permeabilities by a random model is simply solved by transforming the distance between 

discrete grid points to which particles may jump within one time unit, with the distances being 

proportional to the ratio of the diffusion coefficients. 

  

Alternatively we may derive a finite difference scheme for solving the stationary equation 

0)(  CD , which we can write as 

0)/(}
)()(

{ 011122 








x

x

CCD

x

CCD
 

 

or by changing the distance between grid points by the transformation   

1122 /;/ DxxDxx   we get 

 

0)
2

/(}
)()(

{ 12

1

01

2

12 









 xx

x

CC

x

CC
. 

 

In the first case the equation looks symmetrical and one may conclude that the order of the 

approximation is h
2
 while after the simple transformation it becomes clear that the 

approximation is asymmetrical, in the case the approximation is only of order h!! The same is 

true for the time dependent equation. 

 

 

Heat Conduction 

Heat conduction follows exactly the law of diffusion. The difference is that we now follow 

the spreading of a heat impulse: 

 ´ 

TjT  


  

 

with   the heat conductivity which may be once more a tensor. Concerning the energy 

balance (measured in J/s), however, this equation has to be related to the total energy change 

within a specific volume and that becomes  

 

 Tdvc
dt

d
 , 

 

with c the heat capacity and   the density of the material.  

 

In a very careful consideration one has to observe that not just c and   are functions of the 

temperature but that the specific volume also depends on temperature. That means that the 

integral boundaries become a function of temperature, an effect usually ignored because for 

most solids the temperature dependent volume changes are rather small, however, that may 

not be true with certain metals or if we consider large amounts of solids as it is sometimes the 

case in geological problems. Here we will assume that the volume change can be ignored so 

that we can take the partial differential rather than the total (substantial) differential and the 

partial differential equation becomes 

 

)( T
t

Tc








. 
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Observe that heat conduction occurs within the solid and the fluid. In principle we need two 

additional equations: )(Tcc   and )(T  , so that we arrive at a nonlinear problem unless 

one considers c and  to be constant (independent of Temperature), an assumption frequently 

applied in simple geological and geophysical models. For the dimensions of the parameters 

see the appendix to this chapter. 

 

In large scale geological systems it becomes sometimes necessary to consider heat production 

within certain rock types due to radioactive decay or chemical processes which also may 

consume heat. Typical rocks producing heat are by example granites and claystones. In this 

case we have to consider the more general equation 

 

)( TQ
t

Tc








 

 

In the literature you will find frequently the equation 

 

)( T
t

T
c 




 , i.e. the ‘temperature equation’ which is only valid if constc  in which 

case the equation can be further simplified: 

 

)( TD
t

T
T




,  





c
DT  . 

In porous media we have to consider an additional aspect: The medium consists of solids and 

of pores filled wit some fluid like water, oil or some gas (air).  The ratio of the pores to the 

volume is defined by the porosity 

   

bulkvolume

porevolume
 , a dimensionless number (bulk-volume=total volume). 

 

In detail then we have to consider the composition of the porous medium and the parameters 

become 

fluidsolidsbulk   )1(   

 fluidsolidsbulk cccc   )1(  

Thereby the solids may be further differentiated if their fractions fi are known:   

 

 iisolids f  ,    iisolids cfc ,     1if  

 

In a similar way the heat conductivity   is split into two components, however, as it may be a 

tensor, the process is at best a first order approximation if it can be considered a scalar. The 

approximation sometimes used is the geometric mean or 

 
  fluidsolid

 1 , which obviously is less easily extended to a multi component system, to do it 

is a nice exercise. 
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Exercises 

1) Linearize the equation )( T
t

Tc








by partially differentiating the time derivative 

with respect to the parameters, observing that c=c(T) and )(T  . 

 

2) Consider the heat  flow from the interior of the earth which mostly is considered 

stationary, i.e. it is governed by the equation 0)(  T  or  QT  )( . At the 

surface an average thermal gradient of 30°C  is observed. At about 100 km depth the 

boundary between the lithosphere and the astenosphere is reached, the latter behaves 

like a fluid due to seismological data, the temperature at this boundary is 

approximately 1300°C, due to experiments. 

a) Compute the expected temperature at the base of the lithosphere based on the 

average surface gradient. 

b) Compute the expected temperature gradient throughout the lithosphere, based 

on a surface temperature of 0°C. 

c) Discuss for a layered crust qualitatively how the thermal conductivity  should 

vary with depth if the equation 0)(  T  holds. Compare your results with 

conductivity data for real rocks. 

d) Determine for a homogenous lithosphere the ratio of  /Q  required to match 

the observed boundary conditions. 
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Fluid Flow in Porous Media 

What’s left is the fluid flow through a porous medium. Also this part may be considered and 

indeed may be the dominating process; the discussion has been shifted to the end because 

there is a lot of confusion and alternative approaches around in the literature. You may find 

essentially three different definitions which also affect the definition of permeability: 

1) )( 



gp

k
qM


 , the mass flow of the fluid [(kg m)/s], 

2) )( zgpKqD 


, the Darcy velocity [m/s], 

3) )(* hKqh 


or 
l

h
Kqh




 *

 or´ )/( zpKqD  


, as an alternative definition of the 

Darcy velocity [m/s]. 

 

The parameters and variables involved are:  

 , the actual density at a certain point in space;  

 , the constant density at a constant temperature, ignoring the pressure dependence of the 

fluid (water close to zero); 

  , the unit weight of water [kp];  

 , the dynamic viscosity of the fluid which may also depend on temperature;  

g, is the normalized acceleration on earth and 

g


, the vector in the direction of acceleration (in small scale models it acts in the vertical (z) 

direction); 

z, is the height of a water column as measured in a piezometer or a well, 

p, is the pressure in the fluid [N/m
2
 ];   

*,, KKk , have different dimensions although they formally describe the same property but 

with different assumptions concerning the variability of  and  ; k has the dimension 

[m
2
],   K is, especially in the oil industry, referred in [Darcy], and K

*
  has the dimension 

[m/s]. The different definitions and assumptions caused confusion very early and it is not 

easy to recalculate published permeability data between the different concepts. This is well 

illustrated by the facsimile at the end of this chapter from ‘Theoretical Soil Mechanics’ 

(John Wiley and Sons, Inc., 1943). Note that k, K are used differently in Terzaghi’s 

notation (vice versa), here we follow the presently (mostly) accepted notation. 
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Concerning the different definitions for the fluid flux, )( 



gp

k
qM 


 is the most general 

one from which the other ones can be derived. By balancing with the changes in a certain 

volume the following differential equation for the mass of fluid is derived: 

 

))(( 



gp

k
Q

t







, 

which can only be solved together with the equation of state )( p   or more general 

),( Tp  . Q is a source/sink term which in large scale geological systems can be related to 

the alteration of minerals which under certain conditions release or bind water.   

 

Assuming const , Q=0, and )( p  the equation can be linearized by partial 

differentiation: 

 

))(( 



 gp

k

t

p

p











. 

 

Considering const
p





 we get 

 

))(( 



 gp

k

t

p
c f







, 

a linear equation which only depends on p, 
fc is the compressibility of the fluid .  

 

Assuming further that const  and hgp 


 we find from the last equation  

))(( h
g

k

t

h
c f 






 , 

which is sometimes found in the literature. However, here the dog is biting in its tail because 

previously we only assumed const
p





, now we are actually assuming that const , in 

which case the original equation becomes 

))((0 h
g

k



 or ))((0 * hK  , 

i.e. the time dependent problem reduces to a pure stationary one, which has been of 

importance before the invention of digital computers because it was possible to solve this 

equation analytically for simplified models or by using analog computers in the 50
th

 and 60
th

 

of the 20
th

 century, using the black box analogy with electrostatics. The discrepancy, 

however, only occurs if we consider the three dimensional case or a confined aquifer. If, in 

case of an unconfined aquifer, the problem is reduced to two dimensions (x,y) and the third 

dimension (z) becomes the dependent variable in terms of the hydraulic head h, then an 

equation of the type  

))(( h
g

k

t

h
S 





 

results, with S the storage capacity which is hcS f . 
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There are some more approaches available to relate h and gp


 , which are more concise, 

however this will be explained in the context of FEFLOW®. 

 

 

REMARK 

Darcy’s law is valid as long as the flow through the porous medium is governed by capillary 

forces, even if very narrow joints are involved. However, as soon as the connections within 

the porous medium approach pipe size like sometimes in coarse gravel or in open joints this 

basic approach fails. In this case other laws have been developed e.g. the 

Forchheimer equation: ))((2 gpKqbqa


  

Or potential functions : ))(( gpKqc n 
 . 

 

In addition a dispersion term is sometimes introduced which considers that the pore network 

provides a net with complex interactions causing a lateral dispersion of the flow. However, 

this term is hardly determined experimentally in large scale systems, and it should depend on 

the flow velocity, going to zero as the flow goes to zero or it may approach the diffusion 

coefficient in case solutes are involved. 
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Dimensions occurring in the equations 

 

The classical literature is confused by a variety of different units which have been in use in 

the past. Here some relationships are summarized. 

 

Joule: work=Force X Distance, 1 J = 1 N m = 1m
2
 kg s

-2
 =1 W s 

  1 J = 10
7
 erg=10

7
 dyn cm = 10

7
 cm

2
 g s

-2 

1 cal =4.1855 J 

Watt: 1 W = 10
7
 erg/s=(10

7
 cm

2
 g)/s

2
 =1J/s=1 m N/s 

Newton [N]: N= onacceleratimass , 1 N=1 m kg s
-2

  
 

1 N=10
5
 dyn=10

5
 cm g s

-2
 =0.1019716 kp 

Pressure, Pascal [Pa]: pressure=force/area, 

  1 Pa=1 N m
-2

  = 10
-5

 bar=0.101972 kp m
-2

 =0.98693*10
-5

 atm   
 

Velocity: [m s
-1

]  

Mass flux: [kg m s
-1

] 

Mass [  ]: [kg m
-3

]  

Porosity [ ], sometimes [n]: Volume of pore space/ Bulk volume [dimensionless] 

Permeability, intrinsic [k]: [m
2
]  

Permeabilty, Darcy [K]: ((dynamic viscosity)/(pressure difference)) X ((flow 

rate)/area)) 

1 D=(10
-2

 dyn s/cm
2
 )/(1 atm/cm) * (1 cm

2
 /s)/(1 cm

2
 )= 0.987*10

-8 
cm

2
   

         Permeability, hydrostatic [K
*
 ]: [m/s] 

Heat conduction [ ]: 1 J/(s m °K) 

Specific Heat, [c]:1 J/(°C kg) = 1 J/(°K  kg)= 10
4
 cm/(s

2
 °K)   

Heat production: W=J/s, mostly given as W  

Dynamic Viscosity: 10 g/(cm s)=1 kg/(m s)=(0.102 kp s) /m
2
   

 
 

 

  



 

 31 

Coupled Mass and Energy Transport 

 

In the last chapter we considered the transport equation for mass, heat, and fluid transport and 

already observed that they are not independent concerning the state variables involved. 

However, in addition we have to consider that the moving fluid may transport excessive mass 

as well as heat, both modifying the associated properties and in addition may modify the state 

parameters like  ,,, c . Returning to the considerations of chapter 2, the fluid flow 

provides an external vector field or flow field modifying the content of the control volume 

despite any additional complications like chemical reactions. It is left to you to verify the 

following equations by using the machinery developed in chapter 2.  

 

The conservation of mass becomes 

 

1) 0)())(( 



CQqCCD

t

C 
. 

Similar we get for the heat transport 

2) 0)())(( 



Tff

bb QqTcT
t

Tc 



, 

where the subscript b  defines the bulk value (bulk density, bulk heat capacity, while the 

subscript f stays for the properties of the pore fluid. Equations relating the bulk properties 

with the fluid properties have been given above. 

 

The pore water flow is given by  

 3) 0



f

f
Qq

t


,   )( 




gp

k
q


 . 

In order to solve this non linear set of equations we need additional information concerning 

the state variables: 

 

),,( cQTp  usually is not considered, i.e. const , otherwise additional equations, 

perhaps expressed as differential equations may be involved or in other words the 

basic consideration concerning a stationary volume will be violated, as previously has 

been discussed for the thermal expansion/contraction. 

D=D(T) provides a good approximation, similarly 

),,( cbb QTpcc  , ),,( cff QTpcc   are normally reduced to a pure temperature dependence, 

  is mostly considered constant, also it varies with p an T and, of course with the 

composition of the fluid!´ 

k is also mostly considered constant, although it strongly depends on the consolidation 

state of the rocks, including mechanical compaction and chemical reactions. 



 

 32 

Mechanical compaction once more violates the way the differential equations have 

been derived because the control volume will change through time.  

),,( fff QTp   as well as ),,,( cfbb QQTp  , however, may have to be considered at 

least as ),( Tpii    in the case of large scale geological models involving a wide 

variety of pressure and temperature values or if the ‘fluid’ is compressible, like in the 

case of a gas. 

 iQ        the various source/sink terms require additional assumptions like radioactive heat 

production, chemical reactions etc. 

fluid and bulk properties are related by equations like 

fluidsolidsbulk   )1(   

 
fluidsolidsbulk cccc   )1(  

as discussed previously. They may generalized further as discussed above. 

 

Considering all the aspects we approach slowly the real world. However, at the end we have 

an extremely high non-linear system which hardly can be solved with regard to the available 

algorithms and computer power, at least within the lifetime of a scientist. Any practical 

application, therefore will require simplified assumptions which focus at the major processes.  

Recommended Exercise 

Try to linearize equations (1) to (3) with regard to the time dependent state variables by 

ignoring possible source/sink terms (use partial differentiation). 

 

Mathematical formulation of the thermohaline flow problem in FEFLOW 

In the previous paragraphs, different constitutive equations describing mass, heat and fluid 

flow are given in the form of linear relationships between fluxes and driving forces 

(gradients). We already observed that those equations are not independent concerning the 

state variables involved. As additional remark, we should point out that forces of one type can 

generate flows of another type (Bear, 1988). By example, mass flux can be caused by 

temperature gradient (Soret effect) in addition to the concentration gradient (Fick’s law) or, in 

the opposite case, concentration gradient can induce heat flow (Dufour effect), in addition to 

the temperature gradient. (Fourier’s law). In this course, these cross-effects are neglected. We 

will rather assume that groundwater is driven by the gradient of ( )fp gz , appearing in the 

Darcy’s law, as explained in the.  

In nature, depending on the characteristics of the basin (e.g. presence of minerals and/or heat 

source), the “combination” of all or some of the previously described driving forces 

determines the quantity of ( )fp gz  and therefore the actual hydrologic regime of the basin. 

In other words, the synergy between the different processes is referred to as coupling. If in 

some regions the fluid density is greater than in the underlying units, the less dense fluids will 

tend to rise inducing convective currents. The archetypal example is the coupling of heat and 

dissolved halite which both strongly affect fluid density variation. The flow is then called 

thermohaline convection (Nield and Bejan 1999).  
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Here the mathematical formulation of coupled transport processes is given according to the 

notation used in FEFLOW.  

0 sin( ) Bous esqS div Q
t


 


q

  Eq. 1.1 

0

0

( )
f f

f

 




 
    

 

q K grad u

  Eq. 1.2 

 ( ) ( ) C

C
div C div C Q

t


  


q Dgrad

  Eq. 1.3 

    (1 ( ) ( )f f s s f f Tc c div c T div T Q
t

   


    


q λgrad
  Eq. 1.4 

Eq. 1.1 is the equation of fluid mass conservation. S0 is the medium storativity which 

physically represents the volume of water released (or added to) from storage in the aquifer 

per unit volume of aquifer and per unit decline (or rise) of head φ. QBoussinesq is the Boussinesq 

term which incorporates first order derivatives of mass-dependent and temperature dependent 

compression effects. q is the Darcy (or volumetric flux density velocity) defining the specific 

discharge of the fluid. The Darcy’s law is expressed by Eq. 1.2 where K is the hydraulic 

conductivity tensor. Eq. 1.3 is the equation of solute mass conservation where ϕ is the 

porosity of the porous medium, C is the mass concentration, D is the tensor of hydrodynamic 

dispersion and Qc is a mass supply. Eq. 1.4 is the energy balance equation of the fluid and 

porous media. cf and cs is the heat capacity of the fluid and solid respectively, T is the 

temperature, λ is the tensor of hydrodynamic thermodispersion. 
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Constitutive and phenomenological relations of the different physical parameters involved 

in the equations are needed to close this coupled system. Here the hydraulic conductivity 

relation and the Equation of State (EOS) for the fluid density are recalled: 

0

( , )

f

f

g

C T






k
K         Eq. 1.5 

0 0 0 0

0

1 ( , )( ) ( , )( ) ( )f f

s

T p T T T p p p C C
C C


   

 
       

 
  Eq. 1.6 

The hydraulic conductivity tensor K is related to the reference fluid density ρ0f , g is the 

gravitational acceleration, k is the tensor of permeability, µf(C,T) takes into account the fluid 

viscosity effects due to temperature and concentration variations. The EOS for the fluid 

density Eq. 1.6 is related to the reference temperature T0, pressure p0 and concentration C0. α 

is the mass concentration ratio, β(T,p) is the coefficient of thermal expansion and γ(T,p) is the 

coefficient of compressibility. 

As previously, mentioned the primary coupling between groundwater flow, mass and heat 

transport processes is through the Darcy law. The Darcy flow rate q in Eq. 1.2 controls the 

rate of heat and mass convected through the media (equations 1.3 and 1.4) and is also a 

function of fluid density and dynamic viscosity, which are both related on temperature, solute 

concentration and pressure by the respective EOS. 

Therefore coupled fluid flow processes are intrinsically controlled by (1) the hydraulic 

permeability distribution and (2) fluid properties appearing in the Darcy law. In other words, 

the interplay of both solid and fluid properties determines the distribution of fluid pressure, 

flow rates, heat and solute migration.  

1. Since sedimentation processes occurred over geological time-scale, hydraulic 

conductivity can exhibit a wide range of values in the vertical direction. The heterogeinity of 

hydraulic conductivity is also evident in the surroundings of piercing salt domes (quasi-

impervious), Pleistocene channels (highly permeable) and faults (permeable/impervious 

depending on the core properties). For instance, in-situ measured permeability data in 

fractured crystalline rocks can display variations of several orders of magnitude (Ingebristen 

and Sanford, 1998). Furthermore compositionally identical rocks can have different 

permeability at different depths because of consolidation and temperature effects. An example 

of the relative importance of hydraulic permeability in controlling coupled processes is 

faulted systems is given for the western Anatolia example. 

2. The major fluid properties coupling fluid flow processes are density and viscosity. On 

one hand, density variations must be accounted in the Darcy formulation to correctly calculate 

buoyant driving forces, in addition to the pressure gradient (Eq. 1.2). Only very small 

concentration differences are required to achieve density driven flow gradients equivalent to 

typical field scale hydraulic head gradients (Simmons, 2005). On the other hand, as fluid 

viscosity appears in the denominator of the hydraulic conductivity formula (Eq. 1.5), small 

viscosity variations will highly impact the effective hydraulic conductivity and consequently 

the flow rates. EOS are needed to correctly describe temperature, pressure and concentration 

dependences of density (Eq. 1.6) and viscosity. As fluid properties strongly depend on 

temperature and concentration, any effect which causes a significant variation in temperature 

and concentration will play a fundamental role in controlling groundwater flow. In 

sedimentary basins, salt diapirs strongly influence the concentration of dissolved solids. 

Furthermore, salt diapirs also perturb the temperature field because of their high thermal 

conductivity which is two to four times greater than that of the surrounding sediments. In this 

regard, one can say that salt diapirs are a unique geological environment controlling 
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thermohaline flow. Near salt domes, the impact of fluid viscosity is twofold: In a colder and 

highly saline environment, such as a shallow salt-dome crest, it retards brine flow by 

decreasing the effective hydraulic conductivity. In a warmer and less saline environment, 

variable fluid viscosity enhances thermally induced flow. The coupling of transport processes 

will be illustrated for the salt domes of the North East German Basin (NEGB). 

A key number which controls the flow dynamics is the Rayleigh number. If the Rayleigh 

number is large enough, then cellular motion can develop. As a result, a multitude of stability 

analyses based on laboratory experiments were carried out on saturated porous media with 

vertical gradients of temperature and salinity in order to determine the critical Rayleigh 

number for the onset of thermohaline convection (Horton and Rogers 1945; Lapwood 1948; 

Elder 1967).  
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Stability criteria 

A dimensional analysis of the governing balance equations (Eq.(1.1) to Eq.(1.4)) yield to 

the definition of the several adimensional numbers (Nield and Bejan 1999).  

The key dimensionless number is the Rayleigh number (Ra), which is the ratio between 

buoyancy-driven forces and resisting forces caused by diffusion and dispersion: 

 

Thermal Rayleigh number tRa   (1.7) 

Solutal Rayleigh number sRa   (1.8) 

where K is the hydraulic conductivity as defined in Eq.(1.5)   introduces the effect of a 

density change due to the concentration the solute at temperature and pressure  is the 

coefficient of thermal expansion at constant pressure and concentration,   is the thermal 

diffusivity, C  and T  are respectively the concentration and temperature variation, d  is a 

characteristic length of the porous media (e.g., the layer thickness),   is the porosity, dD is the 

coefficient of molecular diffusion. 

The solutal and thermal Rayleigh numbers are related by: 

  (1.9) 

where the dimensionless numbers in connection with heat and mass transport are: 

Buoyancy ratio (Turner) N  is the relative effects of concentration and temperature on 

controlling groundwater density 

  (1.10) 

Lewis number Le  is the ratio of thermal to mass diffusivity  

  (1.11) 

The stability criteria is thoroughly explained in Nield (1991), Diersch and Kolditz (2002). 

Here the main points are recalled. 

 The monotonic instability (or stationary convection) boundary is a straight line defined 

by 24 sTC RaRaRa , where CRa  is the critical Rayleigh number. The critical 

Rayleigh number defines the transition between dispersive/diffusive solute transport (

CRaRa  ) and convective transport by density-driven fingers ( CRaRa  ). CRa  depends 

on the boundary conditions, geometry and anisotropy (Nield 1968). 


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
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Schematic temperature and concentration 

profiles of a homogeneous porous layer heated 

from below. Given thephysical properties of the 

medium, the Rayleigh numbers can be 

determined (Eq.1.7 and Eq.1.8). 
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 The region delimited by 24 sT RaRa  is a stable regime characterized by pure 

conduction and no convection.  

 In a range between 3002404 2  sT RaRa  steady state convective cells develop as 

two-dimensional rolls rotating in clockwise or counter-clockwise direction. A second 

critical Rayleigh number 3002402 cRa is identified as an upper limit. 

 For 2csT RaRaRa   the convection regime is unstable and characterized by a transition 

to an oscillatory and transient convection behaviour.  

From Eq.(1.7) and Eq.(1.8), it can be seen that given the diffusivities of the unit, Rayleigh 

numbers are directly proportional to units thickness and hydraulic conductivity. Therefore 

convective flows (i.e. high Rayleigh numbers) likely occur within thicker and more permeable 

layers.  

 

Brief description of driving forces in large-scale groundwater flow systems 

In sedimentary basins, different driving forces contribute to the transfer of mass and heat. 

These are often referred to as hydrogeologic regimes. Flow, transport and reaction at the scale 

of sedimentary basins are in most cases slow processes. However, over the scale of geologic 

time, they effects are of great importance as they can generate important energy resources. 

Topography driven flow (forced convection) (Fig. 1.3) is the dominant regional-scale 

groundwater flow in uplifted sedimentary basins, both in the shallow and deep sub-surface 

(Freeze et al., 1967).  

 

Fig. 1.3: Topography driven flow (forced convection) in an uplifted sedimentary basin. The dashed line 

illustrates the water-table that is a replica of the landscape. Vectors indicate the flow field. Stronger flow (thicker 

vector) occurs in more permeable units (m/yr: meter per year). 

Usually, in a foreland basin the water table mimics the topographic relief (blue dashed lines in 

Fig. 1.3). A regional flow is induced because of the differences in the hydrostatic head that 

drive fluid from high-elevation recharge areas to low-elevation discharge areas. In general, 

groundwater flow is called forced convection when it is driven by water table gradients. 

Flow lines (bold vectors in Fig. 1.3) and rates depend on several factors as the geometry of 

the aquifers (e.g variable thickness) and their physical properties (e.g., hydraulic 

permeability). For instance, vigorous recharge flow can be observed within the fault as well as 

in the adjacent thin and highly permeable sand unit. Pleistocene channels (not displayed in 

Fig. 1.3) are also important geological features that strongly impact the velocity field and flow 

patterns. Almost no flow occurs in the bottom unit (e.g. impervious clay). Accordingly, 

typical maximum flow rates can strongly vary, ranging from 1 to 10 m year
-1

. 
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Thermally driven flow (free convection). In sedimentary basins, the presence of a geothermal 

field induces fluid-density variations which in turn drive groundwater flow. Fluid motion 

caused by density difference due to temperature variations is called free convection (Fig. 1.4).  

Most commonly, heating of groundwater in a geothermal system is provided by a heat source 

located at depths. In a porous media heated from below, the warmer fluid (i.e. less dense) 

starts to ascend. During this upward migration, the fluid loses its heat. Therefore buoyancy 

forces weaken and the fluid starts to sink again. The resulting flow path is called convective 

cell. Convective patterns are mainly controlled by the hydraulic permeability and the 

thickness of the units. Stronger convective flows are expected to take place in thick and 

permeable stratigraphic units whereas thin aquitards prevent the formation of any free 

convective motion. In highly permeable faults, a multi-cellular regime can develop and drive 

hot fluids to shallow depths. In the surroundings of faults, pressure and temperature patterns 

are strongly perturbed and differ from linear hydrostatic and conductive regimes. The impact 

of faults and less permeable units on geothermal energy migration is illustrated for the 

Western Anatolia example. 

 
Fig. 1.4: Thermally driven flow (free convection) in a geothermal basin. Vectors illustrate the convective cells. 

Stronger convective flow (thicker vector) occurs in more permeable units. Near the faults, cells pattern are 

elongated toward the faults indicating that these units act as preferential pathways for fluid migration. (m/yr: 

meter per year). 

In this regard, dimensionless studies based on Rayleigh and Prandtl numbers, as well as the 

evaluation of the buoyancy ratio, have been developed to determine the onset of convection in 

systems having a given thickness and constant physical parameters (Nield, 1968). However, 

in sedimentary basins, these conditions rarely, if ever, occur. Therefore, determining the onset 

of thermal convection by dimensionless analysis of the basin system is often not practical 

(Simmons et al., 2001). Flow rates in convection cells may vary from few centimeters per 

year up to a meter per year. 

Gravity driven flow (or density driven flow) is the term used when the convective currents are 

induced by density differences due to variations of solute concentration. A favorable scenario 

for gravitational convection is the presence of large salt bodies extending into shallow units 

(Fig. 1.5). The formation of dense brines by dissolution at the base of these salt sheets 

destabilizes the hydrostatic equilibrium within the underlying sediments.  
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Fig. 1.5: Gravitational convection in a geothermal basin. Vectors illustrate the convective cells. (m/yr: meter per 

year) 

Gravity instability beneath the base of the salt sheet manifests itself in the form of several 

incipient downwelling plumes in addition to the edge plume (Fig. 1.5). The solute plumes 

descend toward the base of the underlying sedimentary sequence. The resulting horizontal 

density gradients between the plumes give rise to orderly counter-rotating convections cells. 

This phenomenon can also be observed along the flanks of deep seated salt domes. However, 

in this case, the geothermal gradient also plays a role in inducing density variations and new 

effects might arise. These effects will be explained later in paragraph 1.3.  

Ongoing geological processes such as sediment compaction, hydrocarbon generation or 

degassing of magma can also generate significant fluid flow at different velocity rates. These 

hydrologic regimes, also called geological forcing (Neuzil, 1995), are not considered in this 

work. Compactionally driven pore-water flow rates are usually very slow, in the order of 10
-6

 

to 10
-3

 m year
-1

, while tectonic compression can induce flow rates of 0.5 m year
-1

 (Garven, 

1995). A thorough review can be found in Garven (1995).  

Although the above mentioned driving forces have been described separately, in nature large-

scale processes often occur together so that they cannot be regarded independently. 

Coupled processes 

Over the large spatial scales encountered in sedimentary basins, temperature and solute 

concentration vary strongly and basin deformations are often substantial. Therefore the 

driving forces of groundwater flow can interact leading to new hydrologic regimes. 

Depending on the characteristics of the basin (e.g. heat source, presence of minerals, ongoing 

compaction), the “combination” of all or some of the previously described driving forces will 

determine the hydrological behavior of the basin. In other words, the synergy between the 

different processes is referred to as coupling (Tsang, 1991; Bedehoefat and Norton, 1990). As 

Chen et al. (1990, p. 104) notes," Although we tend to think of a single process it often 

happens that a variety of processes are coupled so strongly that qualitatively new effects and 

system behaviors arise because of this coupling” 

Thermohaline convection: the coupling of density-driven flow: The archetypal example for 

sedimentary basins is the coupling of heat and dissolved halite by controlling fluid density: 

the resulting regime is then called thermohaline convection (Nield and Bejan 1999). Since in 

geothermal basins the temperature gradients increase with depth, heat acts as a destabilizing 

potential. Thermohaline convection can develop cells at rates approaching 1 m yr
-1

 (Evans 

and Nunn, 1989; Garven, 1995) which are strong enough to control temperature and 

concentration fields. Excellent examples of thermohaline convection in a salt dome 

environment are the Gulf of Mexico (Evans and Nunn, 1989) and the NEGB which will be 
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thoroughly described later. Two major scenarios for thermohaline convection to occur can be 

distinguished: 

(1) Salt concentration increases with depth, as for instance in the surroundings of 

deep-seated salt structures (Fig. 1.6).  

 

Fig. 1.6: Thermohaline convection above a deep salt structure, results from numerical simulations. Bold 

vectors illustrate the direction of the convective flow. The isotherms (red dashed lines) show typical 

convective multi-cellular regime. Picture modified after Magri et al. (2005). m/yr: meter per year 

In this case, the salinity gradient acts as stabilizing force. The deeper brines are heated 

from below and become less dense: an upward flow will be triggered when thermal 

induced buoyant forces will overcome gravity, leading to the formation of salty plumes. 

As the plumes keep rising, the brines will cool off quickly while losing little salt 

because of the different rates of diffusion (heat diffuses faster than salt). Buoyancy 

forces will therefore weaken and brine will start sinking. The last part of this script 

provide examples of thermally driven flow around deep-seated salt domes. 

(2) Another possible scenario arises when salinity gradients act as destabilizing 

factors. This can happen when brine forms in shallow areas of the basin (e.g., from 

shallow salt layers, Fig. 1.7). The denser fluid will therefore sink into the deeper 

sediments of the basin, depressing the isotherms. At the same time, lighter and hotter 

fluids will move upward owing to the thermally induced buoyant forces. Consequently, 

brine lenses and convection cells form. 

 

Fig. 1.7: Gravitational convection in a geothermal basin, results from numerical simulations. Bold 

vectors illustrate the direction of the convective flow. Smaller cells (red circles) can develop at the plume 

tips. Sinking brines decrease the temperature at depths (concave isotherms, red dashed lines). M/yr: meter 

per year 

 

At the tips of both the sinking plumes and the edge plume, temperature oscillations can 

develop in a free-convective regime (red circles in Fig. 1.7), generating small brine 

fingers. This case is nicely illustrated for the Schleswig-Holstein shallow salt dome. 
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Mixed convection: the coupling of free and forced convection 

When an external factor such as head-driven groundwater flow (forced convection) is 

imposed on a free thermohaline system the resulting regime is referred to as mixed 

convection. In sedimentary basins, it can happen that thermally-induced and topography-

driven flows coexist (Raffensperger and Garven, 1995a; Thornton and Wilson, 2007). Under 

such mixed condition, the regional flow affects the shape of thermally induced flow patterns 

and brine plumes: the short wavelengths of the temperature oscillations and the elongated 

brine plumes characterizing the free thermohaline regime can merge in bigger cells (Fig. 1.8). 

 
Fig. 1.8: Mixed convection near a salt dome, results from numerical simulations. Free thermohaline regime (top) 

compared to a mixed convective regime (bottom). The topography driven flow (blue vectors) overwhelms the 

thermohaline cells that would develop in a free regime (red vectors). In the mixed convective regime, only one 

larger brine finger reaches the surface. Modified after Magri et al. (2005) 

 

On the other hand, vigorous topographically-driven groundwater flow can overwhelm free 

convection and modify the thermal structure of the basin. Precisely, it causes cooling and 

solute dilution in recharge areas whereas it increases heat flow and brine migration in 

discharge areas. In the NEGB (Chap 2), temperature and solute concentration differences can 

be observed between recharge and discharge areas reaching values of few degrees and few 

g/L, respectively. In active geothermal basins these differences can reach 50°C and several 

g/L (Ingebritsen and Sanford, 1998). An example of the strong impact of mixed convection on 

heat and solute transport is the Western Anatolia area (SBG example). 

Other coupled processes 

Additional effects that contribute to the coupling of hydrologic regimes have mechanical or 

chemical origins, such as dissolution or mineral precipitation that respectively increase or 

reduce both the porosity and permeability of rocks. These processes modify the spatial 

distribution of the physical properties and accordingly boost dramatically the complexity of 

the coupling effects. Hydromechanical and reactive transport coupling at basin-scale is the 

state of the art of numerical and mathematical studies, and require further research. 

However, in a basin system the dominant hydrologic regime is the result of a complex 

interplay between the relative strength of the existing driving forces and other controlling 

factors. As it will be explained in paragraph 1.4, these controlling factors are related to the 

spatial distribution of the rock properties (e.g. hydraulic conductivity) and the fluid properties 

(density and viscosity 
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The Examples 

The mathematical models given in previously can represent coupled transport processes at 

very slow rates. The rapidly increasing computer power and the development of user-friendly 

modeling software allows nowadays to solve those strongly coupled differential equations for 

systems which extend laterally for hundreds of kilometres and to depth of several kilometres 

over geologic time periods (i.e. thousands to millions of years). This length scale is 

henceforth referred to as large scale or sedimentary basin scale. 

In the last two decades, numerical modeling has been applied to study the transient behaviour 

of temperature and mineral migration in sedimentary basins and to elucidate the controlling 

role of hydraulic permeability distributions. The most recent examples are numerical 

simulations of mid-ocean ridge hydrothermal systems (Ingebritsen et al., 2009). 

Large scale simulation of coupled fluid flow, mass and heat transport based on a real 

geothermal system requires a proper fluid model and aquifers representation. EOS (e.g. Eq. 

1.6) are used to reproduce the physical characteristics of fluid density and viscosity. The 

aquifer model should include the structural characteristics of the aquifers as well as the 

physical parameters such as porosities, hydraulic permeabilities, heat conductivity and heat 

capacity. For this purpose, the basin is usually divided in hydrostratigraphic units to represent 

hydraulically similar rock units (Bitzer et al., 2001). Because of the difficulty in representing 

the spatial and temporal variations of these properties, the general approach is to give an 

average or equivalent value of the physical rock properties to each hydrostratigraphic units. 

Therefore, the critical issues of basin-scale modeling are the accuracy of the hydrogeologic 

model and the correct evaluation of the associated equivalent properties. Several techniques 

exist to estimate equivalent hydraulic conductivity as summarized in Zhang et al. (2006). 

Here, the classical approach of representing the sedimentary deposits by a series of 

homogeneous hydrogeologic units is used. In this regard, the spatial discretization of the 

different units plays a crucial role in determining the accuracy of the numerical solution.  

In the next two parts, the North East German Basin (NEGB) and the Seferihisar-Balçova 

Geothermal (SBG) area, Western Anatolia, serve as real study case examples whereby 

numerical models built with FEFLOW are applied to investigate hypotheses of (i) brine 

migration near salt domes (NEGB) and (ii) geothermal activity within faulted systems (SBG). 

In the NEGB case, heat and brine patterns are illustrated for a deep and shallow salt diaper. 

The impact of highly permeable faults in affecting coupled processes is investigated for the 

Western Anatolia case. 

The North East German Basin (NEGB) example 

In some areas of the NEGB, groundwater is anomalously salty. This is witnessed by the 

presence of several saline springs. Further evidence of saline waters is given by plants 

commonly found along sea beaches or in salty soils, such as seashore salt grass, which grow 

in different areas of the basin. Figure 2.7.1 illustrates two species of these plants (Sea 

Milkwort, Strand-Milchkraut and Sea Arrowgrass, Strand-Dreizack) found in Gröben, 50 km 

south of Berlin, during a field trip in 2004.  

 

Fig. 1.9: Sea Milkwort, Strand-Milchkraut 

and Sea Arrowgrass, Strand-Dreizack in the 

Gröben area, 50 km south of Berlin. 
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The spontaneous growth of seashore grass far from the Baltic Sea coast is unusual and signals 

the existence of highly salty soils in the inner part of the basin.  

Although these phenomena are observed since two centuries, the origin and mechanisms 

driving salt in the NEGB aquifer are not fully understood. A DFG funded research (2002-

2008) allowed to carry out hydrochemical analyses of several spring and water samples from 

deep boreholes throughout the area. The results indicate that the main source of salinization is 

dissolution of evaporites at different depths. Therefore driving forces must exist to allow the 

deep-seated heavy brines to migrate and reach the surface.  

As explained previously, salt structures are a unique geological environment controlling 

thermohaline flow, i.e. the coupling of heat and brine transport processes. Numerical models 

of coupled fluid flow in both deep and shallow salt structures of the NEGB are applied in 

order to investigate the role of the different forces and the controlling factors of brine 

migration in salt dome environment. The major outcomes are summarized here. The reader 

can refer to the publications within the DFG project for further details. 

The incorporated geological data are derived from a three-dimensional structural model of the 

NEGB (Scheck 1997; Scheck and Bayer 1999). The area covered by the model is 

approximately 230 x 330 km across and 5 km in depth, consisting of 9 layers of sedimentary 

fill, including the basement. Figure 1.10 illustrates the geological structures of a 

representative cross-section. The NEGB is affected by intense salt tectonics. Thick salt diapirs 

pierce more than 4 km of overlying Mesozoic and Cenozoic strata. Salt crests can also be 

found 500 m below the surface level. Therefore, depth and thickness of sediment sequences 

vary greatly within the basin. The physical properties considered within each layer are 

constant. This first rough aquifer model differentiates only the stratigraphic layers of the 

model without any spatial variation in the horizontal direction. More details concerning the 

physical parameters of the sedimentary layers can be found in Magri et al. (2005).  

 

Fig. 1.10: Stratigraphic units of the 2D cross-section. This is the profile implemented into FEFLOW to carry out 

simulations of fully coupled fluid transport processes. The stratigraphic unit abbreviations are: Cz Cenozoic; K1 

Upper Cretaceous; K2 Lower Cretaceous; J Jurassic; T2-3 Upper Triassic; T2 Middle Triassic; Lower Triassic; 

T1 Buntsandstein 

With regard to the fluid model, brines are considered pure NaCl solution resulting from 

halite dissolution. The saturation concentration of the fluid on the top Zechstein is 345 g/L of 

dissolved halite, which corresponds to a brine density of 1220 g/L. 

The simulations are run over the 2D cross-section illustrated in figure 1.10.  

Figure 1.11(AB) shows the calculated temperature and concentration. The major result is that 

a disturbed temperature profile develops throughout the sediment fill above the Zechstein 

unit. The oscillatory pattern is characteristic of a multicellular convective regime. Below the 
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Zechstein unit the temperature profile is conductive everywhere, showing the well-known 

thermal anomalies within the salt diapirs (i.e., concave temperature isopleths). 

 

Fig. 1.11: A: temperature profile (°C) and B: Concentration (g/L) resulting from transient free thermohaline 

convection 

The simulations suggest that the temperature oscillations can induce density variation 

strong enough to lift plumes of dissolved halite (Fig. 1.11 B). Above the Muschelkalk, brine 

plumes develop rapidly and penetrate the overburden (Fig. 1.11 B). Brine fingers form and 

extend vertically over 3 km throughout the sediments. At the eastern ending of the profile, 

brine plumes do not develop since at that location the convective regime is less vigorous. On 

the other hand, temperature disturbances play a dominant role on brine migration especially in 

the neighborhood of salt diapirs. A zoom of the calculated pore velocity and temperature 

fields in a salt dome environment is shown in figure 1.12.  

 

Fig. 1.12: Zoom of thermohaline simulation results in the salt dome environment. A: Pore water velocity field in 

m yr
-1

. Pore vector linearly scaled to the flow arrow. B: temperature distribution in °C 
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Downward forces resulting from the gravitational field control groundwater flow along salt 

diapir flanks. Brine sinks at approximately 1.5 cm yr-1 (Fig. 1.12A). By contrast, an upward 

flow paralleling this descending flow occurs in the overlying unit at approximately 1 cm yr-1. 

This phenomenon can be explained by the temperature distribution (Fig. 1.12B). Because of 

the thermal conductivity contrast between salt and overlying sediments the isotherms are 

convex near the edge of the salt diapir. The increased temperature gradient causes a decrease 

in fluid density near the salt dome. This drives the groundwater flow toward the salt dome and 

initiates the uprising circulation of brine within the neighboring sediments. 

So far, the thermohaline regimes have been illustrated in deep salt diapirs environment. 

However, salt structures are often shallow. By instance diapir crests close to the basin surface 

provide a source of high salinity for shallow groundwater which becomes denser than the 

underlying fluids. As a result, completely different scenarios for thermohaline convection 

than those previously described can occur. Here, a numerical simulation is run along a profile 

of a shallow salt diapir of the NEGB. This structural profile includes a steep salt diapir 

piercing the sediments up to the surface. The results are illustrated in figure 1.13.  

 

Fig. 1.13: Coupled fluid flow and heat transport simulation in a shallow salt dome. A: Calculated temperature 

profiles in °C (red lines). Black lines delimit the stratigraphic succession. The upper units are the Palaeogene and 

the Cretaceous aquifers B: Zoom of the thermally induced plumes without vertical exaggeration. Black vectors 

indicate the flow direction. 

Different regimes developed within the profile. Within the salt unit, the thermal regime is 

conductive. Again, owing to the strong contrast between the thermal conductivity of the salt 

and the neighbouring sediments, concave isotherms are found within the salt diapir while 

convex above the salt. According to the Rayleigh theory in a porous media, the onset of multi-

cellular convection is favoured in thick and permeable units (Nield 1968). This is the case for 

the Palaeogene and the Cretaceous units where a thermally induced convective regime 

controls the flow. Thermal plumes of 1.5 km height rise vertically from the Cretaceous basis 

up to the surface, bounded by the regional flow. A zoom of an ascending thermal plume is 

shown in figure 1.13B. The cell radius is 1 km and the flow rate in the central part of the 

plume is few millimetres per day. In the deeper units the isotherms are not perturbed and the 

regime is conductive. Temperature and salinity profiles are shown in figure 1.14 
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Fig. 1.14.: Thermohaline simulation in a shallow salt dome. Calculated mass (filled patterns, g/L) and 

temperature profiles (red dashed lines, °C). Black lines delimit the stratigraphic succession. The upper units are 

the Palaeogene and the Cretaceous aquifers. 

Highly saline brines protruding from the salt diapir into the Cretaceous overwhelm the less 

intense thermal convective regime. Heat plumes do not stretch vertically but develop almost 

horizontally in the brine flow direction (compare Fig. 1.13 and 1.14). Therefore, the 

temperature gradient increases horizontally from the salt flank toward the center of the 

profile. As a result, the temperature field can undergo several inversions with increasing depth 

in the western part of the profile. In the Eastern part of the basin, thermohaline convection 

persists within the upper units. Above the horizontally stretched plume, the temperature 

oscillations generate small convective brine cells (half kilometre radius). As a result, 

thermally driven saline waters ascend up to the shallow aquifer and spread locally at several 

points of the surface. In summary, the numerical models have shown that thermally-induced 

flow is an important process in salt bearing basins, and strongly controls both temperature and 

concentration gradients. Owing to the presence of thick salt structures, the geothermal field is 

disturbed. The salt-induced thermal disturbances in turn induce convection of deep brines. 

However, it is not the only process. Topography-driven flow also influences the geothermal 

field and can significantly contribute to brine migration. Whereas the principal effects of 

thermohaline convection could be shown, much more detailed knowledge of transport 

properties (hydraulic permeability, thermal conductivity) and their regional distribution, 

including faults and fractures, are necessary in order to achieve more accurate large-scale 

models. 

In the next example, we will how the presence of highly permeable faults can generate 

convective like groundwater motions also in the surrounding units, possibly being a 

mechanism causing seawater intrusion in the coastal aquifers of geothermal systems. 

 

The Seferihisar-Balcova Georthermal area (SBG) example 

Here, transport processes are numerically investigated in the faults of the Seferihisar-

Balçova Geothermal system (SBG), Western Anatolia. In this hydrothermal system, natural 

springs at temperatures ranging between 30 and 78 °C form along the major faults. An 

interesting feature of this system is the regional variable salinity of springs: in in the Balçova 

area, thermal waters have low chloride (Cl) contents, whereas in the, in the Doğanbey area, 

thermal waters are salty with a strong seawater contribution.  

 

Fig. 1.15.: The Seferihisar-Balçova geothermal system. Geologic setting of the studied profile. 

Furthermore, it is not clear what forces drive salty water inland. A DFG project (MA4450-

1) was funded to build up the first models of coupled fluid processes in the SBG. The 
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simulation results indicate that large-scale free convection induced by buoyancy-driven flow 

develops in all faults driving hot basinal fluids from the basement to the surface.  

Simulated flow paths and velocity fields in the Balçova and Doğanbey areas are illustrated 

in Figure 1.16. Three flow patterns can be distinguished: (1) In the Balçova area, the steep 

topography gradients drive groundwater from the horst to the coastal alluvium (i.e. regional 

flow, blue lines). The main discharge zone is the seafloor / alluvium interface. The steep 

topography gradients lead to very vigorous flow in the alluvium, with peak velocities of 15 m 

year-1 (Fig. 1.16a).  

 

Fig. 1.16.: Flow pathlines (no streamlines) and velocity field (m/year) calculated from transient thermohaline 

simulations for: (a) Balçova, Northern SBG; and (b) Doğanbey, Southern SBG. The arrows indicate the flow 

direction. Red flow patterns are free-thermally induced cells in the faults. The resulting fault-induced cells are 

illustrated in green. Recharge flow from the horst is in blue. Minor faults (dashed lines) are not included in the 

simulations. (SF: sea floor; A: alluvium; UR: Upper Reservoir; R: reservoir unit, Bornova Mélange; B: 

basement; F: fault; NE: northeast; SW: southwest). No vertical exaggeration is used 

Recharge water also infiltrates through the upper reservoir units into the adjacent fault at 

velocities of a few centimeters per year. In Doğanbey, the regional flow is extremely weak 

because of the rather flat topography and the presence of very thin alluvium. (2) In the faults, 

convective cells (red lines) develop as a result of thermal-buoyant forces; groundwater 

percolates from the horst to great depths where it is heated by the geothermal gradient. The 

warm and less-dense water ascends along the faults and vents through alluvium. The 

velocities of these fault-bounded convective cells range between 2 and 7 m year
-1

 (Fig. 1.16). 

As a result of the focused outflow of thermal water, the fluid pressure in the faults from the 

basement to the lower reservoir interface is less, compared to what it would be if cooler 

waters were in the fault. These pressure offsets are also referred to as pressure drops. (3) As a 

consequence, in the reservoir unit kilometer-scale flow patterns similar to convective cells 

(green lines) stretch from the seafloor and alluvium units toward the fault.  

Groundwater motion in the reservoir units is driven by the pressure-gradient forces 

resulting from the constant head at the seafloor and the thermally-induced pressure drop in the 

faults. In other words, the free convective regime in the faults induces convective-like 

recirculation in the surrounding units. Simulations without faults do not show convective 
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circulation, but only topography-driven flow originating from the horst. Because of the 

impervious nature of the basement, the flow lines run parallel to the upper-basement boundary 

before they are captured by the convective flow in the fault. As a consequence, fault-induced 

convection cells are well- developed in the 2-km thick Balçova reservoir, but are poorly 

defined in the thin aquifer above the uplifted basement in the Doğanbey area. The fault-

induced flow velocities range from a centimeter per year near the seafloor to half a meter per 

year at the edge of the fault (Fig. 1.16).  

The described flow patterns have major impacts on both the temperature (Fig. 1.17) and mass 

distribution (Fig. 1.18) in the profile. The ascending buoyant plumes generate elevated 

temperature within the faults (Fig. 1.17). As a result, the isotherms within the faults are 

deflected parallel to the fault leading to several temperature inversions. Temperatures higher 

than 80 °C occur locally within the alluvium at fault intersections where thermal waters vent. 

In the Balçova area, the vigorous regional flow generates a thermal plume that reaches 50 °C 

upon discharging at the ground surface. Advected thermal plumes of this nature are unlikely 

to develop in the Doğanbey area, where the regional flow is less vigorous. Far from the faults, 

the geothermal gradient is purely conductive, suggesting that the fault-induced cells are not 

generated by the geothermal gradient of the basin (i.e. there is no free convection). The onset 

of thermohaline convection can be determined by calculating thermal and solutal Rayleigh 

numbers. However, an accurate stability analysis of transient large-scale models is 

challenging, if not impossible, because the physical properties of fluid and hydrogeologic 

units are not constant. Several simulations in which the reservoir permeability has been 

gradually increased showed that the onset of thermal convection is triggered in the Balçova 

and Doğanbey reservoir units at hydraulic conductivities of 17 m year
-1

 and 32 m year
-1

 

respectively. 

 

 

Fig. 1.17: Temperature (°C) calculated from transient thermohaline simulations for: (A) Balçova, Northern SBG; 

and (B) Doğanbey, Southern SBG. Minor faults (dashed lines) are not included in the simulations. (SF: sea floor; 

A: alluvium; UR: Upper Reservoir; R: reservoir unit, Bornova Mélange; B: basement; F: fault; NE: northeast; 

SW: southwest) 

The vigorous upward flow in the faults can induce km-scale convective cells in the 

surrounding Mélange, as explained previously (Fig. 1.17). These fault-induced convection 

cells develop in areas where the regional flow is weak, such as below horizontal alluvium 

deposits and seafloors.  
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In the latter case, the convection cells that extend to the freshwater/seawater interface can 

drive salty waters toward the faults and inland units (Fig. 1.18).  

 

Fig. 1.18: Concentration (gL
-1

) calculated from transient thermohaline simulations for: (A) Balçova, Northern 

SBG; and (B) Doğanbey, Southern SBG. Minor faults (dashed lines) are not included in the simulations. (SF: sea 

floor; A: alluvium; UR: Upper Reservoir; R: reservoir unit, Bornova Mélange; B: basement; F: fault; NE: 

northeast; SW: southwest) 

The results show that at the fault intersections, seawater mixes with ascending thermal 

waters. The salinity of the resulting springs is likely controlled by different flow rates of the 

regional flow and structural features of the basin: In the northern area, extended areas of low 

TDS are due to both the strong topographic gradients and thick deposits of alluvial and 

Mélange sediments. By contrast, in the south, the flat topography, thin alluvium, and the 

uplifted basement reduce the depth of seawater penetration and favour the merging of plumes 

into wide saline areas. In the Balçova area, a 30 g L-1 seawater finger stretches from the 

seafloor toward the fault (Fig 1.18a). In the Doğanbey area, several heavy plumes sink within 

the longer and thinner reservoir unit (Fig. 1.18b). 

A coupled fluid-flow and mass-transport simulation showed that without a geothermal 

gradient the initial linear salinity distribution within both seafloors remains unchanged. 

Therefore, the seawater plumes in the reservoir units do not result from density-driven 

convection, in which a denser fluid sinks into an underlying lighter fluid, but from the forced 

convection induced by the hydraulic head patterns. 

Though this part illustrates the SBG example, the described processes concern faults which 

can be encountered in many geothermal systems in the world. The described fault-induced 

convection cells could by example explain outflow of relict brine through the faults of the 

Tiberias Lake, the presence of dissolved halite within the faults of the Rhine Graben, 

Germany or the mineral deposits in the Polish Basin. 
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