
Coupled Fluid Flow



Darcy‘s Law
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Heat conduction
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The change of energy within the control volume becomes
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Or if sources or sinks are vailable (chemical reactions, radioactive heat production)
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and that the specific volume

will also depend on the temperature. In detail the size of the control volume 
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Dimensions
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Units

𝐻𝑒𝑎𝑡 𝑓𝑙𝑜𝑤 𝑞: 𝑊𝑚−2

𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝞴 (k): W𝑚−1𝐾−1

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝞳: 𝑚2𝑠−1

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 𝑐𝑝: 𝐽 𝑘𝑔
−1𝐾−1

ℎ𝑒𝑎𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛: W 𝑚−3

μW/m3



Fick‘s 1st law
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D is mostly given as the diffusion coefficent in pure water. Provide an estimate 

for porous media.

The flux is related to the temporal change by
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Or if chemical reactions are involved within the porous medium

)( CDQ
t

C






D:    𝑚2𝑠−1



Coupled equations
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Mathematical formulation of the thermohaline flow 

problem in FEFLOW
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Cross section through the Büsum diapir and adjacent rim synclines with temperature isolines (left)

and vitrinite reflectance isolines (right)



Type of thermohaline flow

Thermally induced 

brine plumes 

developping on a 

deep salt sheet

Brine lenses, 

gravitational 

convection from a 

shallow salt sheet

Dasehd lines: isotherms (°C)



Thermohaline flow in the NE German Basin

Stratigraphic units



Stability criteria
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The solutal and thermal Rayleigh numbers are related by
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24 sTC RaRaRa

CRa

•The monotonic instability (or stationary convection) boundary is a

•straight line defined by

is the critical Rayleigh number.

.

The region delimited by 
24 sT RaRa

is a stable regime characterized by pure conduction and no convection.

In a range between 3002404 2  sT RaRa

steady state convective cells develop

For
2csT RaRaRa  the convection regime is unstable


