Coupled Fluid Flow

Darcy's Law

$$\vec{q}_{M} = \frac{k\rho}{\mu} (\nabla p - \vec{g}\rho) \quad [\text{kg m/s}]$$

$$\vec{q}_D = K \nabla (p - g \overline{\rho} z)$$
 [m/s]

 $\vec{q}_h = K^* \nabla(h)$ or $\vec{q}_h = K^* \frac{\Delta h}{\Delta l}$ or $\vec{q}_D = K(\nabla p / \gamma + z)$ [m/s]

$$S\frac{\partial h}{\partial t} = \nabla(\frac{k}{g\mu}\nabla(h))$$

Heat conduction

$$\vec{j}_T = -\lambda \nabla T$$

The change of energy within the control volume becomes

$$\frac{\partial c\rho T}{\partial t} = \nabla (\lambda \nabla T) \quad \text{[J/s]}$$

Or if sources or sinks are vailable (chemical reactions, radioactive heat production)

$$\frac{\partial c \rho T}{\partial t} \pm Q = \nabla (\lambda \nabla T)$$

Observe that c = c(T) and $\rho = \rho(T)$ and that the specific volume will also depend on the temperature. In detail the size of the control volume changes

Dimensions of Energy

(amount of heat, work)

$$1J = 1\frac{kg m^2}{s^2} = 1Nm$$

= 1 Ws

Units

Heat flow q: Wm^{-2}

conductivity $\boldsymbol{\lambda}$ (k): Wm⁻¹K⁻¹

diffusivity κ : $m^2 s^{-1}$

specific heat $c_p: J kg^{-1}K^{-1}$

heat production: W m^{-3} μ W/m³

Fick's 1st law $\overline{j}_c = -D\nabla C$

D is mostly given as the diffusion coefficent in pure water. Provide an estimate for porous media.

The flux is related to the temporal change by

$$\frac{\partial \phi C}{\partial t} = \nabla (D \nabla C)$$

Or if chemical reactions are involved within the porous medium

$$\frac{\partial \phi C}{\partial t} \pm Q = \nabla (D \nabla C)$$

D: $m^2 s^{-1}$

Coupled equations

$$\frac{\partial \varphi C}{\partial t} - \nabla (D(\nabla C)) + \nabla (C\vec{q}) + Q_C = 0$$

$$\frac{\partial c_b \rho_b T}{\partial t} - \nabla (\lambda (\nabla T)) + \nabla (c_f \rho_f T \vec{q}) + Q_T = 0$$

$$\frac{\partial \varphi \rho_f}{\partial t} + \nabla \vec{q} + Q_f = 0 \qquad \qquad \vec{q} = -\frac{k\rho}{\mu} (\nabla p - \vec{g}\rho)$$

$$\begin{split} \varphi &= \varphi(p,T,Q_c) & \rho_f = \rho_f(p,T,Q_f) \\ D &= D(T) & \rho_b = \rho_b(p,T,Q_f,Q_c) \\ c_b &= c_b(p,T,Q_c) & \lambda(T) \\ c_f &= c_f(p,T,Q_c) & k(p,T,Q_i) \end{split}$$

Mathematical formulation of the thermohaline flow problem in FEFLOW

$$\mathbf{S}_{0} \frac{\partial \varphi}{\partial t} + \operatorname{div}(\mathbf{q}) = Q_{\text{Boussinesq}}$$
$$\mathbf{q} = -\mathbf{K} \left(\operatorname{grad}(\varphi) + \frac{\rho_{f} - \rho_{0f}}{\rho_{0f}} \right)$$

$$\frac{\partial \phi C}{\partial t} + \operatorname{div}(\mathbf{q}C) - \operatorname{div}(\mathbf{Dgrad}(C)) = Q_C$$

$$\frac{\partial}{\partial t} \Big(\Big(\phi \rho_f c_f + (1 - \phi) \rho_s c_s \Big) T \Big) + \operatorname{div}(\rho_f c_f T \mathbf{q}) - \operatorname{div}(\lambda \operatorname{grad}(T)) = Q^T$$

$$\mathbf{K} = \frac{\mathbf{k}\rho_{0f}g}{\mu_f(C,T)}$$

$$\rho^f = \rho_0^f \left(1 - \overline{\beta}(T, p)(T - T_0) + \overline{\gamma}(T, p)(p - p_0) + \frac{\overline{\alpha}}{C_{sat} - C_0} (C - C_0) \right)$$

$$\overline{\alpha} = \frac{\rho_{sat}^f - \rho_0^f}{\rho_0^f}$$

Cross section through the Büsum diapir and adjacent rim synclines with temperature isolines (left) and vitrinite reflectance isolines (right)

Type of thermohaline flow

Thermally induced brine plumes developping on a deep salt sheet

Brine lenses, gravitational convection from a shallow salt sheet

Dasehd lines: isotherms (°C)

Thermohaline flow in the NE German Basin

Stability criteria

Thermal Rayleigh number

$$Ra_T = \frac{K\beta\Delta Td}{\Lambda}$$

Solutal Rayleigh number

$$Ra_{s} = \frac{\frac{\overline{\alpha}}{C_{sat} - C_{0}} K\Delta Cd}{\varepsilon D_{d}}$$

 $Ra_{s} = N \times Le \times Ra_{T}$

The solutal and thermal Rayleigh numbers are related by

$$N = \frac{\frac{\overline{\alpha}}{C_{sat} - C_0} \Delta C}{\overline{\beta} \Delta T}$$

$$Le = \frac{\Lambda}{\varepsilon D_d}$$

Buoyancy ratio (Turner)

<u>Lewis number</u>

The monotonic instability (or stationary convection) boundary is a
straight line defined by

$$Ra_C = Ra_T + Ra_s = 4\pi^2$$

 Ra_{C} is the critical Rayleigh number.

The region delimited by $Ra_T + Ra_s < 4\pi^2$

is a stable regime characterized by pure conduction and no convection.

In a range between $4\pi^2 < Ra_T + Ra_s < 240 - 300$ steady state convective cells develop

For $Ra_T + Ra_s > Ra_{c2}$ the convection regime is unstable