HELMHOLTZ

ASSOCIATION

Variational methods for rate- and
state-dependent friction models
Ralf Kornhuber ${ }^{1}$, Onno Oncken², Elias Pipping ${ }^{1}$, Oliver Sander ${ }^{1}$
${ }^{1}$ Mathematical Institute of the Free University, Berlin, Germany ${ }^{2}$ GFZ German Research Centre for Geosciences, Potsdam, Germany

Setting

We consider two layers of rock that obey a rate- and state-dependent friction law of the form

$$
\begin{equation*}
\mu=\frac{\|\tau\|}{\sigma_{n}}=\mu_{0}+a \log \frac{V}{V_{0}}+b \log \frac{\theta V_{0}}{L} \tag{1}
\end{equation*}
$$

This kind of friction law can be used to model velocity weakening, which leads to earthquakes, or velocity strengthening, which leads to fault creep.

Motivation

The above law can be motivated through velocity stepping tests, in which changes in the coefficient of friction are found to stem not only directly from a change in velocity, but also from state-effect that acts over time as shown below.

The friction coefficient under (simulated) velocity stepping
Here, the velocity in the interval $\left[t_{1}, t_{2}\right]$ is greater than the one from before t_{1} and after t_{2}.

Model problem

We consider an elastic body Ω on a rigid surface, whose boundary is made up of three disjoint subsets

- Γ_{D}, on which we impose the displacement,
- Γ_{N}, on which we prescribe the surface force f_{N}, and
- Γ_{F}, for which we formulate the rate- and state-dependent friction law.
This situation is illustrated below.

A model slider
Assuming that acceleration can be neglected, it can be summarised as

$\boldsymbol{\sigma}(u)$	$=\mathcal{C}: \varepsilon(u)$		in Ω		(elasticity)
$\operatorname{Div} \boldsymbol{\sigma}(u)+f$	$=0$		in Ω		(balance of momentum)
u	$=0$		on Γ_{D}		
$\sigma(u)$	$=f_{N}(t)$		on Γ_{N}		
u_{n}	$=0$		on Γ_{F}		
$-\tau$	$\in \partial_{V} \phi(\dot{u}, \theta)$		on Γ_{F}	(friction law)	

We also assume that σ_{n} is known and bounded on Γ_{F} and that the state θ evolves according to either

$$
\dot{\theta}=1-\frac{V}{L} \theta \quad \text { or } \quad \dot{\theta}=-\frac{V}{L} \theta \log \left(\frac{V}{L} \theta\right)
$$

Stress function

To obtain (2), we rewrite (1) as

$$
\|\tau\|=a \sigma_{n} \log \left(V / V_{m}(\theta)\right)=a \sigma_{n} \frac{\partial F}{\partial V}(V, \theta)
$$

with $V_{m}(\theta)=V \exp (-\mu / a)$ and

$$
F(V, \theta):=V \log \left(V / V_{m}(\theta)\right)-V+V_{m}(\theta)
$$

With state fixed, the tangential stress is thus the derivative of a function wrt. velocity. That function is plotted below (on the left).

While F is very smooth, we could just as easily consider a non-smooth convex function like G. In particular, we can handle the unregularised friction law.

Time-discrete problem

Through time discretisation we arrive at a system of two coupled elliptic variational inequalities of the form

$$
\exists u: a(u, v-u)+j(\theta, v)-j(\theta, u) \geq \ell(v-u) \forall v
$$ and

$\exists \theta: A(\theta, \vartheta-\theta)+J(u, \vartheta)-J(u, \theta) \geq L(\vartheta-\theta) \forall \vartheta$
making our problem accessible to modern analytical tools as well as fast and robust numerical algorithms.

As a consequence, both problems are found to possess energies whose minima are attained solely at the respective solutions. The coupled minimisation problems that result from this observation are solved using a fixed-point iteration.

Numerical framework of choice

Distributed and Unified Numerics Environment

Algorithm

Once we have discretised in space, Finite Elements are used. The displacement problem is solved using TNNMG,

TNNMG	Pre-smoother Multigrid solver Line search ODE solver The overall algorithm Post-smoother Nonsmooth
the Truncated Newton Multigrid method. The state problem decouples	

pointwise, leading to scalar minimisation problems.

The TNNMG method involves smoothing that guarantees convergence and a multigrid solver, to which it owes its speed.

$$
\begin{array}{|c|}
\hline \text { Nonlinear Gauß-Seidel } \begin{array}{c}
\text { Steepest descent } \\
\text { Line search }
\end{array} \\
\text { Detail: The smoother }
\end{array}
$$

At each node, the nonlinear Gauß-Seidel smoother solves minimisation problems using steepest descent.

Deforming slider

In this two-dimensional instance of the model problem, the body is pressed to the right while its top is fixed and its bottom is allowed to slide. A numerical simulation can be seen below.

The same code can handle the three-dimensional case.

Computational effort and degrees of freedom

The computational effort (measured in wall clock time) is eventually linear in the degrees of freedom as can be seen in the graph below (I: 2D, r: 3D). Our algorithm is thus optimal.

refinements

Solving a 3D problem with 262144 elements and 500 timesteps up to an accuracy of 10^{-14} takes 8.5 hours on a single core of a current processor (Intel Xeon E31245, 3.30 GHz). The table below gives precise timings.

ref.	2	3	4	5	6	7	8	9	10

| 2D | 1 | 3 | 9 | 30 | 110 | 446 | 1779 | 7197 | 28945 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 3D 1365489399031378

Time in seconds for various levels of refinement

