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Setting

We consider two layers of rock that obey a rate- and
state-dependent friction law of the form
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‖τ‖
σn
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+ b log
θV0

L
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This kind of friction law can be used to model velocity
weakening, which leads to earthquakes, or velocity
strengthening, which leads to fault creep.

Motivation

The above law can be motivated through velocity stepping
tests, in which changes in the coefficient of friction are
found to stem not only directly from a change in velocity,
but also from state-effect that acts over time as shown
below.
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The friction coefficient under (simulated) velocity stepping

Here, the velocity in the interval [t1, t2] is greater than the
one from before t1 and after t2.

Model problem

We consider an elastic body Ω on a rigid surface, whose
boundary is made up of three disjoint subsets
I ΓD, on which we impose the displacement,
I ΓN, on which we prescribe the surface force fN, and
I ΓF , for which we formulate the rate- and state-dependent
friction law.
This situation is illustrated below.
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A model slider

Assuming that acceleration can be neglected, it can be
summarised as

σ(u) = C : ε(u) in Ω (elasticity)
Divσ(u) + f = 0 in Ω (balance of momentum)

u = 0 on ΓD

σ(u) = fN(t) on ΓN

un = 0 on ΓF

−τ ∈ ∂Vφ(u̇, θ) on ΓF (friction law) (2)

We also assume that σn is known and bounded on ΓF and
that the state θ evolves according to either

θ̇ = 1− V
L
θ or θ̇ = −V

L
θ log
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Stress function

To obtain (2), we rewrite (1) as

‖τ‖ = aσn log(V /Vm(θ)) = aσn
∂F
∂V

(V , θ)

with Vm(θ) = V exp(−µ/a) and

F (V , θ) := V log(V /Vm(θ))− V + Vm(θ)

With state fixed, the tangential stress is thus the
derivative of a function wrt. velocity. That function is
plotted below (on the left).
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A sample function G

Tangential stress over velocity

While F is very smooth, we could just as easily consider a
non-smooth convex function like G . In particular, we can
handle the unregularised friction law.

Time-discrete problem

Through time discretisation we arrive at a system of two
coupled elliptic variational inequalities of the form

∃u : a(u, v − u) + j(θ, v )− j(θ, u) ≥ `(v − u) ∀v
and

∃θ : A(θ, ϑ− θ) + J(u, ϑ)− J(u, θ) ≥ L(ϑ− θ) ∀ϑ
making our problem accessible to modern analytical tools
as well as fast and robust numerical algorithms.

As a consequence, both problems are found to possess
energies whose minima are attained solely at the
respective solutions. The coupled minimisation problems
that result from this observation are solved using a
fixed-point iteration.

Numerical framework of choice

Distributed and Unified Numerics Environment

Dune

Algorithm
Once we have discretised in space, Finite Elements are
used. The displacement problem is solved using TNNMG,

TNNMG
ODE solver

Pre-smoother
Multigrid solver

Line search
Post-smoother

The overall algorithm

the Truncated
Nonsmooth
Newton
Multigrid
method. The
state problem
decouples

pointwise, leading to scalar minimisation problems.

The TNNMG method involves smoothing that guarantees
convergence and a multigrid solver, to which it owes its
speed.

Nonlinear Gauß-Seidel
Steepest descent

Line search
Detail: The smoother

At each node, the nonlinear Gauß-Seidel smoother solves
minimisation problems using steepest descent.

Deforming slider

In this two-dimensional instance of the model problem, the body is pressed to the right while its top is fixed and its
bottom is allowed to slide. A numerical simulation can be seen below.

t = 0 t = 250 t = 500

A sliding example in 2D (with 1600x magnified deformation)

The same code can handle the three-dimensional case.

t = 0 t = 250 t = 500

A sliding example in 3D (with 1600x magnified deformation)

Computational effort and degrees of freedom

The computational effort (measured in wall clock time) is
eventually linear in the degrees of freedom as can be seen in the
graph below (l: 2D, r: 3D). Our algorithm is thus optimal.
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Solving a 3D problem with 262144 elements and 500
timesteps up to an accuracy of 10−14 takes 8.5 hours
on a single core of a current processor (Intel Xeon
E31245, 3.30GHz). The table below gives precise
timings.
ref. 2 3 4 5 6 7 8 9 10
2D 1 3 9 30 110 446 1779 7197 28945
3D 13 65 489 3990 31378

Time in seconds for various levels of refinement

Mail: kornhuber@math.fu-berlin.de, onno.oncken@gfz-potsdam.de, pipping@math.fu-berlin.de, sander@math.fu-berlin.de


